81.8k views
0 votes
If sec Θ =
(2 √(3) )/(3) and sin Θ < 0 , then find cot Θ +
√(2)

1 Answer

3 votes

\sec x=(1)/(\cos x)\\\\\sec\theta=(2\sqrt3)/(3) \ \textgreater \ 0\ and\ \sin\theta \ \textless \ 0\to\theta\ is\ in\ the\ 4-th\ quadrant.\\\theta\in\left((3\pi)/(2);\ 2\pi\right)\\\\\sec\theta=(2\sqrt3)/(3)\\\\(1)/(\cos\theta)=(2\sqrt3)/(3)\Rightarrow\cos\theta=(3)/(2\sqrt3)\cdot(\sqrt3)/(\sqrt3)\\\\\cos\theta=(3\sqrt3)/(2\cdot3)\\\\\cos\theta=(\sqrt3)/(2)\to\theta=(11\pi)/(6)\\\\\cot\theta=\cot(11\pi)/(6)=\cot(5\pi)/(6)=-\sqrt3


Answer:\boxed{\sqrt2-\sqrt3}
User Santiago Vanegas
by
7.9k points