183k views
1 vote
Prove tan(θ / 2) = sin θ / (1 + cos θ) for θ in quadrant 1 .

1 Answer

6 votes

Answer:

Explanation:

We have to prove the identity
tan((\Theta )/(2))=(sin\Theta)/(1+cos\Theta )

We will take right hand side of the identity


(sin\Theta)/(1+cos\Theta)=(2sin((\Theta )/(2))cos((\Theta )/(2)))/(1+[2cos^(2)((\Theta )/(2))-1])


=(2sin((\Theta )/(2))cos((\Theta )/(2)))/(2cos^(2)((\Theta )/(2)))
=(sin((\Theta )/(2)))/(cos((\Theta )/(2)))


=tan((\Theta )/(2)) [ Tan θ will be positive since θ lies in 1st quadrant ]

= L. H. S.

Hence proved.

User Verkter
by
8.1k points