138,157 views
1 vote
1 vote
Find the unknown measures. Round lengths to the nearesthundredth and angle measures to the nearest degree.10 cm15 cmR

Find the unknown measures. Round lengths to the nearesthundredth and angle measures-example-1
User NIKHIL RANE
by
3.3k points

1 Answer

9 votes
9 votes

In a right triangle, we can use the pythagorean theorem to find the side lengths.

Algebraically, pythagorean theorem is:


a^2+b^2=c^2

Alternately, it is:


\text{Leg}^2+\text{AnotherLeg}^2=\text{Hypotenuse}^2

Given,

Hypotenuse = 15

Leg = 10

Let's find QP:


\begin{gathered} 10^2+\text{AnotherLeg}^2=15^2 \\ 100+QP^2=225 \\ QP^2=225-100 \\ QP^2=125 \\ QP=\sqrt[]{125} \\ QP=\sqrt[]{25*5} \\ QP=\sqrt[]{25}*\sqrt[]{5} \\ QP=5\sqrt[]{5} \end{gathered}

With respect to Angle R, we can write:


\begin{gathered} \cos R=(10)/(15) \\ R=\cos ^(-1)((10)/(15)) \\ R=48.19\degree \end{gathered}

We know 3 angles in a triangle add to 180 degrees. So, we can write:


\begin{gathered} \angle Q+\angle P+\angle R=180 \\ \angle Q+90+48.19=180 \\ \angle Q+138.19=180 \\ \angle Q=180-138.19 \\ \angle Q=41.81\degree \end{gathered}

The answers are:


\begin{gathered} QP=5\sqrt[]{5}=11.18\text{ cm} \\ \angle R=48\degree \\ \angle Q=42\degree \end{gathered}

User EricMorentin
by
3.1k points