96,141 views
10 votes
10 votes
Find the derivative using the limit definition f(x)= 2x^2 -4x + 3

User PeeteKeesel
by
2.3k points

1 Answer

23 votes
23 votes

Answer:

Given that to ind the derivative using the limit definition

f(x)= 2x^2 -4x + 3

we have that,


f^(\prime)(x)=\lim _(h\to0)(f(x+h)-f(x))/(h)

we get,


f\mleft(x+h\mright)=2(x+h)^2-4(x+h)+3

Solving this we get,


f(x+h)=2(x^2+2xh+h^2)-4x-4h+3
f(x+h)=2x^2-4x+3+4xh+2h^2-4h

Substitute the values in f'(x) is,


f^(\prime)(x)=\lim _(h\to0)(2x^2-4x+3+4xh+2h^2-4h-(2x^2-4x+3))/(h)
f^(\prime)(x)=\lim _(h\to0)(4xh-4h+2h^2)/(h)
f^(\prime)(x)=\lim _(h\to0)(4x-4+2h^{})
f^(\prime)(x)=4x-4

the derivative using the limit definition of f(x) is 4x-4

Answer is: 4x-4.

User Dprice
by
3.2k points