103k views
2 votes
Integral of sec (3x) tan (3x) dx

1 Answer

1 vote

\int {sec (3x)tan(3x)} \, dx= \int { (1)/(cos(3x))* (sin(3x))/(cos(3x)) } \, dxSubstitution:u=cos(3x), du=-3sin(3x)dx, sin(3x)dx= du/-3 Integral becomes:
(-1)/(3) *\int { (1)/( u^(2) ) } \, du= (-1)/(3) \int {u^(-2) } \, du=( u^(-1) )/(3)= (1)/(3u)= (1)/(3cos(3x))+C
User Siva Bathula
by
7.9k points