195k views
3 votes
What is f(x) = 7x2 + 42x written in vertex form?

User Joe Robe
by
8.2k points

2 Answers

4 votes
Hello,

y=7x²+42x
==>y=7(x²+2*3*x+9)-63
==>y=7(x+3)²-63


User Neenad
by
9.1k points
5 votes

Answer:


\boxed{\boxed{y = 7(x+3)^2-63}}

Explanation:

The general vertex form of parabola is,


y=a(x-h)+k

where,

(h, k) is the vertex of the parabola.

The given function is,


\Rightarrow f(x) = 7x^2 + 42x


\Rightarrow y = 7x^2 + 42x


\Rightarrow y = 7(x^2 + 6x)


\Rightarrow y = 7(x^2 + 2\cdot x\cdot 3)


\Rightarrow y = 7(x^2 + 2\cdot x\cdot 3+3^3-3^2)


\Rightarrow y = 7(x^2 + 2\cdot x\cdot 3+3^3)-7\cdot 3^2


\Rightarrow y = 7(x+3)^2-7\cdot 9


\Rightarrow y = 7(x+3)^2-63

This is vertex form the given function.

User Sifat Ifty
by
8.7k points