57.7k views
0 votes
The function f(t) = t2 + 6t − 20 represents a parabola.

Part A: Rewrite the function in vertex form by completing the square. Show your work. (6 points)

Part B: Determine the vertex and indicate whether it is a maximum or a minimum on the graph. How do you know? (2 points)
The function H(t) = −16t2 + 90t + 50 shows the height H(t), in feet, of a projectile after t seconds. A second object moves in the air along a path represented by g(t) = 28 + 48.8t, where g(t) is the height, in feet, of the object from the ground at time t seconds.

Part A: Create a table using integers 1 through 4 for the 2 functions. Between what 2 seconds is the solution to H(t) = g(t) located? How do you know? (6 points)

Part B: Explain what the solution from Part A means in the context of the problem. (4 points)

2 Answers

3 votes

The correct answers are:

Question 1 - Part A: f(t)=(t+3)²-29; Part B: (-3, -29), minimum; Question 2 - Part A: H(1) = 124, g(1) = 76.8; H(2) = 166, g(2) = 125.6; H(3) = 176, g(3) = 174.4; H(4) = 154, g(4) = 223.2; Part B: Between 3 and 4 seconds, because that is where the values of g(t) catch up with H(t).

Step-by-step explanation:

Our quadratic function is in the form f(x)=ax²+bx+c. Our value of a is 1, b is 6, and c is -20.

To write a quadratic in vertex form, first take half of the b value and square it: (6/2)² = 3² = 9. This is what we will add and subtract to the function:

f(t) = t²+6t+9-20-9

The squared portion will be (t+b/2)²:

f(t) = (t+3)²-20-9

f(t) = (t+3)²-29

Vertex form is f(x) = a(x-h)²+k, where (h, k) is the vertex; in our function, (h, k) is (-3, -29).

Since the value of a was a positive, this parabola opens upward; this makes the vertex a minimum.

For Question 2 Part A, substitute the values 1, 2, 3 and 4 in H(t) and g(t).

For Part B, we can see that the values of g(t) are much less than that of H(t) until 3 seconds. From there, we can see that g(t) passes H(t). This means that the solution point, where they intersect, is between 3 and 4 seconds.

User Joel Shemtov
by
8.0k points
2 votes
Part A: f(t) = t² + 6t - 20
u = t² + 6t - 20
+ 20 + 20
u + 20 = t² + 6t
u + 20 + 9 = t² + 6t + 9
u + 29 = t² + 3t + 3t + 9
u + 29 = t(t) + t(3) + 3(t) + 3(3)
u + 29 = t(t + 3) + 3(t + 3)
u + 29 = (t + 3)(t + 3)
u + 29 = (t + 3)²
- 29 - 29
u = (t + 3)² - 29

Part B: The vertex is (-3, -29). The graph shows that it is a minimum because it shows that there is a positive sign before the x²-term, making the parabola open up and has a minimum vertex of (-3, -29).
------------------------------------------------------------------------------------------------------------------
Part A: g(t) = 48.8t + 28 h(t) = -16t² + 90t + 50
| t | g(t) | | t | h(t) |
|-4|-167.2| | -4 | -566 |
|-3|-118.4| | -3 | -364 |
|-2| -69.6 | | -2 | -194 |
|-1| -20.8 | | -1 | -56 |
|0 | -28 | | 0 | 50 |
|1 | 76.8 | | 1 | 124 |
|2 | 125.6| | 2 | 166 |
|3 | 174.4| | 3 | 176 |
|4 | 223.2| | 4 | 154 |
The two seconds that the solution of g(t) and h(t) is located is between -1 and 4 seconds because it shows that they have two solutions, making it between -1 and 4 seconds.

Part B: The solution from Part A means that you have to find two solutions in order to know where the solutions of the two functions are located at.
User Komaruloh
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories