362,702 views
11 votes
11 votes
I need help with this.. having trouble solving it’s a practice from my ACT prep guide

I need help with this.. having trouble solving it’s a practice from my ACT prep guide-example-1
User Big Lep
by
2.9k points

1 Answer

23 votes
23 votes

SOLUTION

Given the question in the image, the following are the solution steps to answer the question

STEP 1: Draw the described triangle

STEP 2: Find the third side


\begin{gathered} \text{third side is the hypotenuse} \\ \text{opposite}=8,\text{adjacent}=4,\text{hypotenuse}=\text{?} \\ By\text{ pythagorean theorem,} \\ \text{hypotenuse}^2=opposite^2+adjacent^2 \\ \text{hypotenuse}^2=8^2+4^2 \\ \text{hypotenuse}^2=64+16=80 \\ \text{hypotenuse}=\sqrt[]{80}=\sqrt[]{16*5}=\sqrt[]{16}*\sqrt[]{5}=4*\sqrt[]{5}=4\sqrt[]{5} \end{gathered}

STEP 3: Redraw the complete triangles

STEP 4: Find the trigonometric ratio for csc B

The cosecant of angle B in a right triangle is equal to the length of the hypotenuse divided by the opposite side. To solve csc, simply enter the length of the hypotenuse and opposite side, then solve.


\begin{gathered} \csc B\text{ stands for Cosec B} \\ \csc B=(1)/(\sin\theta)=(hypotenuse)/(opposite) \\ \text{For the angle B,} \\ \text{hypoteunse}=4\sqrt[]{5},opposite=8,adjacent=4 \\ By\text{ substituting into the formula, we have} \\ \csc B=\frac{4\sqrt[]{5}}{8}=\frac{1\sqrt[]{5}}{2}=\frac{\sqrt[]{5}}{2} \end{gathered}

STEP 5: Find the trigonometric ratio for cot B

The cotangent formula for an angle θ is: cot θ = (Adjacent side) / (Opposite side)


\begin{gathered} \text{cot B stands for cotangent B} \\ \cot B=\frac{\text{adjacent}}{\text{opposite}} \\ \text{opposite}=8,\text{adjacent}=4 \\ By\text{ substitution.} \\ \cot B=(4)/(8)=(1)/(2) \end{gathered}

STEP 5: Find the trigonometric ratio for cos A


\begin{gathered} \cos A\text{ stands for Cosine A} \\ \cos A=\frac{\text{adjacent}}{\text{hypotenuse}} \\ \text{adjacent}=8,\text{hypotenuse}=4\sqrt[]{5} \\ By\text{ substitution,} \\ \cos A=\frac{8}{4\sqrt[]{5}}=\frac{2}{\sqrt[]{5}} \\ By\text{ rationalization of surds, we have;} \\ \frac{2}{\sqrt[]{5}}*\frac{\sqrt[]{5}}{\sqrt[]{5}}=\frac{2*\sqrt[]{5}}{\sqrt[]{5}*\sqrt[]{5}}=\frac{2\sqrt[]{5}}{\sqrt[]{25}} \\ \cos A=\frac{2\sqrt[]{5}}{5} \end{gathered}

I need help with this.. having trouble solving it’s a practice from my ACT prep guide-example-1
I need help with this.. having trouble solving it’s a practice from my ACT prep guide-example-2
User Amal Nandan
by
3.1k points