The number of dollars collected can be modelled by both a linear model and an exponential model. To calculate the number of dollars to be calculated on the 6th day based on a linear model, we recall that the formula for the equation of a line is given by (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1), where (x1, y1) = (1, 2) and (x2, y2) = (3, 8) The equation of the line representing the model = (y - 2) / (x - 1) = (8 - 2) / (3 - 1) = 6 / 2 = 3 y - 2 = 3(x - 1) = 3x - 3 y = 3x - 3 + 2 = 3x - 1 Therefore, the amount of dollars to be collected on the 6th day based on the linear model is given by y = 3(6) - 1 = 18 - 1 = $17 To calculate the number of dollars to be calculated on the 6th day based on an exponential model, we recall that the formula for exponential growth is given by y = ar^(x-1), where y is the number of dollars collected and x represent each collection day and a is the amount collected on the first day = $2. 8 = 2r^(3 - 1) = 2r^2 r^2 = 8/2 = 4 r = sqrt(4) = 2 Therefore, the amount of dollars to be collected on the 6th day based on the exponential model is given by y = 2(2)^(5 - 1) = 2(2)^4 = 2(16) = $32