49.9k views
4 votes
What is the solution set for x in log4(x+5)+log4x=log4 14

1 Answer

3 votes

log_ {4} (x+5) + log_4(x) = log_4(14)

For logs with same base :


log_b(f(x)) + log_b(g(x)) = log_b(f(x)*g(x))


Log_4(x+5) + log_4(x) =log_4((x+5)x)


log_4((x+5) = log_4(14)

When the logs have the same base :


log_b(f(x)) = log_b(g(x))


F(x) = g(x)

For
log_4((x+5)x) = log_4(14)

Solve
(x+5)x = 14

expand


(x+5)x = x^2 + 5x


x^2+5x+14


(x-2)(x+7) = 0


x = 2 , x = - 7

Therefore, the final solution :
x = 2

hope this helps!





User Carl Zulauf
by
8.0k points