144k views
4 votes
Solve the following triangle in which given sides are
a=7 b=7 c=9

1 Answer

6 votes
we have an isosceles triangle;
A=opposite angle side a.
B=opposite angle side b.
C=opposite angle side c.

A=B
Method 1:

We can divide the isosceles triangle in two right triangles,
hypotenuse=7
side=9/2=4.5

B=A=arccossine (4.5/7)=49.994799...º≈50º
C/2=90º-50º=40º ⇒ C=2*40º=80º

Answer:
a=7; A=50º
b=7; B=50º
c=9; C=80º

Method 2:
Law of cosines:
a²=b²+c²-2bcCosA ⇒CosA=(a²-b²-c²)/(-2bc)
CosA=(49-49-81) / (-126)=0.642857
A=arco cos (81/126)≈50º

B=A=50º

A+B+C=180º
50º+50º+C=180º
C=180º-100º
C=80º

Answer:

a=7; A=50º
b=7; B=50º
c=9; C=80º

User Hvester
by
7.8k points