150k views
3 votes
Find the indefinite integral. (use c for the constant of integration.) sech8 x tanh x dx

User Smithy
by
8.1k points

1 Answer

0 votes

Answer:


\displaystyle \int {sech^8(x)tanh(x)} \, dx = -(sech^8(x))/(8) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {sech^8(x)tanh(x)} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = sech^8(x)
  2. [u] Differentiate [Hyperbolic Differentiation, Chain Rule]:
    \displaystyle du = -8sech^8(x)tanh(x) \ dx

Step 3: integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {sech^8(x)tanh(x)} \, dx = (-1)/(8)\int {-8sech^8(x)tanh(x)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int {sech^8(x)tanh(x)} \, dx = (-1)/(8)\int {} \, du
  3. [Integral] Reverse Power Rule:
    \displaystyle \int {sech^8(x)tanh(x)} \, dx = (-u)/(8) + C
  4. Back-Substitute:
    \displaystyle \int {sech^8(x)tanh(x)} \, dx = -(sech^8(x))/(8) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Iwhp
by
7.0k points