466,108 views
35 votes
35 votes
The spread of a fungal infection in an ant colony

The spread of a fungal infection in an ant colony-example-1
User TinOfBeans
by
2.8k points

1 Answer

16 votes
16 votes

Given the equation:


(dy)/(dt)=\frac{y+1}{2\sqrt[\placeholder{⬚}]{t}}

When t=1, y=3 (three percent of the ants are infected).

Replacing in the equation:


(dy)/(dt)=(3+1)/(2√(1))=2

a) The equation of the line tangent to the graph is:


\begin{gathered} y=3+2(t-1) \\ y=3+2t-2=2t+1 \end{gathered}

In t= 1.2.


\begin{gathered} y(t)=2t+1 \\ y(1.2)=2(1.2)+1=3.4 \end{gathered}

The percentage of the colony infected in t=1.2 is 3.4.

b) y explicity:


\begin{gathered} (dy)/(dt)=(y+1)/(2√(t)) \\ \\ (dy)/(y+1)=\frac{dt}{2\sqrt[\placeholder{⬚}]{t}} \end{gathered}

integrating both sides:


\int(dy)/(y+1)=\int\frac{dt}{2\sqrt[\placeholder{⬚}]{t}}

The first one will be:


\begin{gathered} \int(dy)/(y+1) \\ u=y+1 \\ du=dy \\ \int(du)/(u)=ln(u)=ln(y+1)+c \end{gathered}

The second one, will be:


\begin{gathered} (1)/(2)\int\frac{dt}{\sqrt[\placeholder{⬚}]{t}} \\ (1)/(2)\int t^{-(1)/(2)}dt=(1)/(2)*(\frac{t^{-(1)/(2)+1}}{-(1)/(2)+1})=(1)/(2)(\frac{t^{(1)/(2)}}{(1)/(2)})=t^{(1)/(2)}+k \\ \end{gathered}

Substituing:


ln(y+1)+c=t^{(1)/(2)}+k

Using D=k-c


\begin{gathered} ln(y+1)=t^{(1)/(2)}+D \\ y+1=e^{\sqrt[\placeholder{⬚}]{t}}*e^D \end{gathered}

Finally:


y=e^{\sqrt[\placeholder{⬚}]{t}}e^D-1

User Mariella
by
3.0k points