531,568 views
39 votes
39 votes
Complete the polar form of z.Imaginary axis10181614142iReal axis10-10 -8-6-4-202.46 800-21-41-61N-81-101Write your answers as decimals rounded to the nearest tenth. Express the argument o indegrees, with 0° so < 360°.(cos O + isinSubmit

Complete the polar form of z.Imaginary axis10181614142iReal axis10-10 -8-6-4-202.46 800-21-41-61N-example-1
User Theister
by
2.9k points

1 Answer

21 votes
21 votes

Answer:


(√(16+(-6i)^2),\tan^(-1)(-(3i)/(2)))

Explanation:

To convert from Cartesian coordinates to polar coordinates:


\begin{gathered} r=√(x^2+y^2) \\ \theta=\tan^(-1)((y)/(x)) \\ \text{ Polar coordinates would be:} \\ (r,\theta) \end{gathered}

Therefore, for the given coordinate:


z(4,\text{ -6i\rparen}
\begin{gathered} r=√(4^2+(-6i)^2) \\ \theta=\tan^(-1)(-(3i)/(2)) \end{gathered}

Hence, the polar coordinates of the given cartesian coordinates:


(√(16+(-6i)^2),\tan^(-1)(-(3i)/(2)))

User Vek
by
2.6k points