231k views
5 votes
Find the area of the surface. the part of the paraboloid z=4-x^2-y^2 that lies above the xy-plane

User Igor Khrol
by
8.5k points

1 Answer

6 votes
Parameterize the surface (call it
\mathcal S) by


\mathbf s(u,v)=\langle u\cos v,u\sin v,4-u^2\rangle

with
0\le u\le2 and
0\le v\le2\pi. Then the surface element is


\mathrm dS=\|\mathbf s_u*\mathbf s_v\|=u√(1+4u^2)\,\mathrm du\,\mathrm dv

The area of
\mathcal S is then given by the surface integral


\displaystyle\iint_(\mathcal S)\mathrm dS=\int_(v=0)^(v=2\pi)\int_(u=0)^(u=2)u√(1+4u^2)\,\mathrm du\,\mathrm dv

=\displaystyle2\pi\int_(u=0)^(u=2)u√(1+4u^2)\,\mathrm du=\frac{(17^(3/2)-1)\pi}6\approx36.1769
User Ross Patterson
by
9.1k points