450,760 views
36 votes
36 votes
What values for θ (0 ≤ θ ≤ 2π) satisfy the equation?2 sinθ cos θ + sqr rt 2 cos θ = 0

What values for θ (0 ≤ θ ≤ 2π) satisfy the equation?2 sinθ cos θ + sqr rt 2 cos θ = 0-example-1
User Martins
by
2.2k points

1 Answer

20 votes
20 votes

ANSWER


(\pi)/(2), (3\pi)/(2), (5\pi)/(4), (7\pi)/(4)

Step-by-step explanation

Given;


2\sin \left(θ\right)\cos \left(θ\right)+√(2)\cos \left(θ\right)=0

Factorise cos ;


\cos \left(θ\right)\left(2\sin \left(θ\right)+√(2)\right)=0

Solving separately, we have;


\begin{gathered} \cos\left(θ\right)=0 \\ or \\ 2\sin \left(θ\right)+√(2)=0 \\ \end{gathered}
cos(\theta)=0\text{ }

Cos theta will only be zero when angle is;


(\pi)/(2),(3\pi)/(2)

SOolving for;


\:2\sin \left(θ\right)+√(2)=0

The solution is;


\begin{gathered} \begin{equation*} 2\sin\left(θ\right)+√(2)=0 \end{equation*} \\ =θ=(5\pi)/(4),(7\pi)/(4) \end{gathered}

Hence, combining the two solutions , we have;


(\pi)/(2),(3\pi)/(2),(5\pi)/(4),(7\pi)/(4)

ANSWER

User Griegs
by
2.6k points