489,203 views
42 votes
42 votes
The distance between Ql-1, a) and P(3. – 2) is 4/5. Find all possible values of a.

User Marc Demierre
by
2.8k points

1 Answer

18 votes
18 votes

Q (-1, a)

P (3, -2)

distance's formula:


\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}\text{ }

So:


d\text{ = }\sqrt[]{(3+1)^2+(-2-a)^2}\text{ = }4\sqrt[]{5}


\sqrt[]{16+4+4a+a^2\text{ }}=\text{ 4}\sqrt[]{5}
\sqrt[]{20+4a+a^2\text{ }}=\text{ 4}\sqrt[]{5}
20+4a+a^2\text{ = 16 x 5}
\begin{gathered} 20+4a+a^2\text{ = 80} \\ 20+4a+a^2-\text{ 80 = 0 } \\ -60+4a+a^2\text{ = 0} \\ (a\text{ + 10 )(a - 6) = 0} \\ a\text{ = 6 or a = -10} \end{gathered}

User Pastapockets
by
3.2k points