168k views
4 votes
Two thirds of a number decreased by six is two. what is the number?

User Slava
by
8.3k points

1 Answer

4 votes
Answer: The number is: " 12 ".

____________________________________
Let "x" represent "the unknown number" (for which we wish to solve.

The expression:


(2)/(3) x − 6 = 2 ; Solve for "x" ;
_______________________________________________
Method 1)

Add "6" to EACH SIDE of the equation;
_______________________________________________

(2)/(3) x − 6 + 6 = 2 + 6 ;

to get:


(2)/(3) x = 8 ;
______________________________________________
Multiply each side of the equation by "
(3)/(2)" ; to isolate "x" on one side of the equation ; and to solve for "x" ;
______________________________________________

(3)/(2) *
(2)/(3) x = 8 *
(3)/(2) ;

→ x = 8 *
(3)/(2) ;

=
(8)/(1) *
(3)/(2) ;

=
(8*3)/(1*2) ;

=
(24)/(2) ;

= 12 .
______________________________________________
x = 12 .
______________________________________________
Method 2)
______________________________________________

(2)/(3) x − 6 = 2 ; Solve for "x" ;

Add "6" to EACH SIDE of the equation;
_______________________________________________

(2)/(3) x − 6 + 6 = 2 + 6 ;

to get:

(2)/(3) x = 8 ;
______________________________________________
Multiply each side of the equation by "3" ; to get rid of the "fraction" ;
→ 3 *
(2)/(3) x = 8 * 3 ;

(3)/(1) *
(2)/(3) x = 8 * 3 ;

(3*2)/(1*3) x = 8 * 3

(6)/(3) x = 24 ;

→ 2x = 24 ;

→ Divide each side of the equation by "2" ; to isolate "x" on one side of the equation; & to solve for "x" :

2x / 2 = 24 / 2 ;

x = 12 .
__________________________________________________
Method 3).
__________________________________________________

(2)/(3) x − 6 = 2 ; Solve for "x" ;
_______________________________________________
Add "6" to EACH SIDE of the equation;
_______________________________________________

(2)/(3) x − 6 + 6 = 2 + 6 ;

to get:


(2)/(3) x = 8 ;
______________________________________________
Now, divide each side of the equation by "
(2)/(3) " ;
to isolate "x" on one side of the equation; & to solve for "x" ;
___________________________________________________
{
(2)/(3) x } / {
(2)/(3)} = 8 / {
(2)/(3)} ;

to get: x = 8 / {
(2)/(3)} ;

= 8 * (
(3)/(2) ;

=
(8)/(1) *
(3)/(2) ;

=
(8*3)/(1*2) ;

=
(24)/(2) ;

= 12 ;
___________________________________________
x = 12 .
___________________________________________
NOTE: Variant: (in "Methods 2 & 3") :
___________________________________________
At the point where:
___________________________________________
= 8 * (
(3)/(2)) ;

=
(8)/(1) *
(3)/(2) ;
__________________________________________
We can cancel out the "2" to a "1" ; and we can cancel out the "8" to a "4" ;
__________________________________________
{since: "8÷2 = 4" ; and since: "2÷2 =1" } ;
__________________________________________
and we can rewrite the expression:
__________________________________________

(8)/(1) *
(3)/(2) ;
__________________________________________
as:
(4)/(1) *
(3)/(1) ;
__________________________________________
which equals:
__________________________________________

(4*3)/(1*1) ;

=
(12)/(1) ;

= 12 .
__________________________________________
x = 12 .
__________________________________________
Answer: The number is: " 12 ".
__________________________________________
User HSchmale
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories