42,613 views
4 votes
4 votes
Find a set of parametric equations for y= 5x + 11, given the parameter t=2-x

User Ytsen De Boer
by
2.6k points

1 Answer

20 votes
20 votes

Given the equation:


y=5x+11

Let's find a set of parametric equation for the given equation given the parameter:


t=2-x

From the parameter:

t = 2 - x

Rewrite the parameter for x.

Rearrange the parameter:


2-x=t

Subtract 2 from both sides:


\begin{gathered} 2-2-x=t-2 \\ \\ -x=t-2 \end{gathered}

Divide all terms by -1:


\begin{gathered} (-x)/(-1)=(t)/(-1)-(2)/(-1) \\ \\ x=-t+2 \\ \\ x=2-t \end{gathered}

Now, substitute (2 - t) for x in the given equation:


\begin{gathered} y=5x+11 \\ \\ y=5(2-t)+11 \end{gathered}

Simplify the equation using distributive property:


\begin{gathered} y=5(2)+5(-t)+11 \\ \\ y=10-5t+11 \\ \\ \text{ Collect like terms:} \\ y=-5t+10+11 \\ \\ y=-5t+21 \end{gathered}

Therefore, the set of parametric equations is:

• x = 2 - t

,

• y = -5t + 21

ANSWER:

• x = 2 - t

,

• y = -5t + 21

User Juan Rada
by
3.1k points