364,315 views
34 votes
34 votes
400 people applied for three jobs 130 of the applicants are women if three persons are selected at random what is the probability that: a: one is a woman, b: two are women c: all are women d: none are women?

User Milliron X
by
2.9k points

1 Answer

14 votes
14 votes

Probability:

Women (W)= 130

Men (M) = 400 - 130 = 270

Total = 400

Prob(W) = 130/400 = 13/40

Prob(M) = 270/400 = 27/40

a. Probability of selecting one woman out of 3 applicants:

Possible outcomes = {WMM, MWM, or MMW}


\begin{gathered} \text{Prob(One Woman)}=\text{ (}(13)/(40)*(27)/(39)*(26)/(38))\text{ +(}(27)/(40)*(13)/(39)*(26)/(38))\text{ + (}(27)/(40)*(26)/(39)*(13)/(38))\text{ = 3 x( }(27)/(40)*(26)/(39)*(13)/(38)) \\ \\ \text{ = 0.4618 }\approx\text{ 0.46} \end{gathered}

b. Possible outcomes = {WWM, WMW, or MWW}


\begin{gathered} \text{Prob(Two Women) = (}(13)/(40)*(12)/(39)*(27)/(38))\text{ + (}(13)/(40)*(27)/(39)*(12)/(38))\text{ + (}(27)/(40)*(13)/(39)*(12)/(38))\text{ = 3(}(13)/(40)*(12)/(39)*(27)/(38)) \\ \\ \text{ = 0.213 }\approx\text{ 0.21} \end{gathered}

c. Possible outcomes = (WWW)


\text{Prob(WWW) = }(13)/(40)*(12)/(39)*(11)/(38)=0.0289\approx0.03

d.


\text{Prob(None is a woman) = 1-Prob(WWW)=1-0.0289 = 0.971}\approx0.97

The correct answers are: a. 0.46

b. 0.21

c. 0.03

d. 0.97

User Peter Bray
by
2.8k points