Given:
In triangle ABC, a = 6, c = 4, and B = 75°.
To find:
The measure of b.
Solution:
According to the Law of Cosine:
![b^2=a^2+c^2-2ac\cos B](https://img.qammunity.org/2022/formulas/mathematics/high-school/atc16jk22kipv964fstqfylose3to0mryq.png)
Substituting the given values in the above formula, we get
![b^2=(6)^2+(4)^2-2(6)(4)\cos (75^\circ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xoa46lklyfnvmnrprwftzpimamprcggubp.png)
![b^2=36+16-48(0.2588)](https://img.qammunity.org/2022/formulas/mathematics/high-school/i1w3e3in9wsl888r7062j8ne4e3epiv0wh.png)
![b^2=52-12.4224](https://img.qammunity.org/2022/formulas/mathematics/high-school/ugpqzaezyb4m701oiu5ganmtazvhqpinen.png)
![b^2=39.5776](https://img.qammunity.org/2022/formulas/mathematics/high-school/d2cud8cmxmen8lyackfjj9e2evmjgtbi6d.png)
Taking square root on both sides, we get
![b=√(39.5776)](https://img.qammunity.org/2022/formulas/mathematics/high-school/noyd2ul6406jog3khxmdosz3xisdsvhv6q.png)
![b=6.291073](https://img.qammunity.org/2022/formulas/mathematics/high-school/fryp5k0q78cdt91g7n0ylrnkmqghkk7okb.png)
![b\approx 6.29](https://img.qammunity.org/2022/formulas/mathematics/high-school/1ewhguoaz11apc2z0qh3fw5f84e99xqgyl.png)
The measure of side b is 6.29 units.
Therefore, the correct option is B.