15,653 views
26 votes
26 votes
Find the particular solution of the differential equation that satisfies the initial conditions.

Find the particular solution of the differential equation that satisfies the initial-example-1
User Narendra Motwani
by
3.5k points

1 Answer

27 votes
27 votes


\begin{gathered} f^(\prime\prime)(x)=-(4)/((x-1)^2)-2 \\ u=x-1 \\ f^(\prime)(x)=\int_(x>1)(-(4)/((x-1)^2)-2)\cdot dx=-4\int_(u>0)u^(-2)\cdot du-2\int_(x>1)dx+c \\ f^(\prime)(x)=(4)/(u)-2x \\ f^(\prime)(x)=(4)/(x-1)-2x+c \\ f^(\prime)(x)=(-2x^2+2x+4)/(x-1)+c \\ f^(\prime)(2)=0 \\ c=-((-2\cdot2^2+2\cdot2+4))/(2-1) \\ c=0 \\ \begin{equation*} f^(\prime)(x)=(-2x^2+2x+4)/(x-1) \end{equation*} \\ f(x)=\int_(x>1)(-2x^(2)+2x+4)/(x-1)\cdot dx \\ f(x)=-2\int_(x>1)(x^2)/(x-1)dx+2\int_(x>1)(x)/(x-1)dx+4\int(1)/(x-1)dx \\ f(x)=-(x^2+2x+2\ln|x-1|-3)+2(x-1+\ln|x-1|)+2\ln|x-1|+c \\ f(x)=-x^2+2\ln|x-1|+1+c \\ f(2)=3 \\ -2^2+2\ln|2-1|+1+c=3 \\ c=6 \\ \therefore f(x)=-x^2+2\ln|x-1|+7 \end{gathered}
User Crowder
by
2.8k points