The given expression :
h(n) = 3n+ 5
g(n)=n + 3
We need to find : (h - g)(n)
Since (h - g)(n) can be express as :
(h - g)(n)= h(n) - g(n)
Substitute the value of h(n) and g(n)
(h - g)(n) = (3n+5) - (n+3)
(h - g)(n) = 3n + 5 - n - 3
(h - g)(n) = 3n - n + 5 - 3
(h - g)(n) = 2n + 2
(h - g)(n) = 2 (n + 1)
Answer : (h - g)(n) = 2 (n + 1)