163,684 views
27 votes
27 votes
Use the figure to evaluate the function given that g(x)=cos xg(theta/2)=

Use the figure to evaluate the function given that g(x)=cos xg(theta/2)=-example-1
User Emma Tebbs
by
2.6k points

1 Answer

9 votes
9 votes

First, notice that since the point (a,1) belongs to the circumference x^2+y^2=5, then:


\begin{gathered} a^2+1^2=5 \\ \Rightarrow a^2+1=5 \\ \Rightarrow a^2=4 \end{gathered}

Since the point (a,1) is in the second quadrant, then:


a=-2

Remember that the coordinates of a point on a circle of radius r can be written in terms of the angle as:


(r\cos (\theta),r\sin (\theta))

The radius of the circle in this case is the square root of 5. Then:


(-2,1)=(\sqrt[]{5}\cos (\theta),\sqrt[]{5}\sin (\theta))

Therefore:


\begin{gathered} \sqrt[]{5}\cos (\theta)=-2 \\ \Rightarrow\cos (\theta)=-\frac{2}{\sqrt[]{5}} \end{gathered}

On the other hand, remember the following identity:


\cos ((\theta)/(2))=\sqrt[]{(1+\cos (\theta))/(2)}

Substitute the value for the cosine of θ:


\begin{gathered} \cos ((\theta)/(2))=\sqrt[]{\frac{1-\frac{2}{\sqrt[]{5}}}{2}} \\ =\sqrt[]{\frac{\sqrt[]{5}-2}{2\sqrt[]{5}}} \\ =\sqrt[]{\frac{5-2\sqrt[]{5}}{10}} \end{gathered}

Therefore:


g((\theta)/(2))=\sqrt[]{\frac{5-2\sqrt[]{5}}{10}}

User HpsMouse
by
3.0k points