386,328 views
9 votes
9 votes
Brian started a business selling maps of hiking trails. His initial expense was $200.00. The graph below shows Brian's profit from selling different number of maps. Part C. How much money will brian profit if he sells 300 maps?

Brian started a business selling maps of hiking trails. His initial expense was $200.00. The-example-1
User Deep Nirmal
by
3.1k points

1 Answer

21 votes
21 votes

Let,

x = Maps sold

y = Profit

a.) Since the graph shows it's linear, let's create an equation applying this formula,


\text{ y = mx + b}

From the graph, let's use the ordered pairs (40, 0) and (0, -200) from the given data,

Let's solve for m,


m\text{ = }\frac{0\text{ - (-200)}}{40\text{ - 0}}\text{ = }(200)/(40)\text{ = 5}

Let's solve for b, let's use (40,0) for x and y.


\text{ y = mx + b}
0\text{ = (5)(40) + b}


\text{ b = -200}

Thus, the equation will be,


\text{ y = 5x - 200}

Or we can rephrase it as an equation to solve for the profit,


\text{Profit = 5(Maps sold) - 200}

b.) The ordered pairs (40, 0) and (0, -200) represents Brian's profits from selling a different number of maps.

(40, 0) = Brian will get no profits if he'll only sell 40 maps. His sale will only be just breakeven to his initial expenses.

(0, -200) = Brian will lose $200 which is his initial expense if he couldn't sell a map.

c.) Brian's profit if he sells 300 maps.

Let's use the formula we made from Part. a,


\text{ y = 5x - 200}

x = 300, we get,


\text{ y = 5(300) - 200 = 1500 - 200 = 1300 = \$1,300}

Brian will earn $1,300 dollars if he sells 300 maps.

User Sushrita
by
3.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.