166,057 views
41 votes
41 votes
Solve this system using any method15y-3=-3x6x-2y=6

User Satorg
by
2.5k points

1 Answer

20 votes
20 votes

Dividing the first equation by -3 we get:


\begin{gathered} (15y-3)/(-3)=(-3x)/(-3), \\ (15y)/(-3)-(3)/(-3)=(-3x)/(-3), \\ -5y+1=x\text{.} \end{gathered}

Substituting x=-5y+1 in the second equation we get:


6(-5y+1)-2y=6.

Applying the distributive property we get:


\begin{gathered} 6*(-5y)+6*1-2y=6, \\ -30y+6-2y=6. \end{gathered}

Adding like terms we get:


-32y+6=6.

Subtracting 6 from the above equation we get:


\begin{gathered} -32y+6-6=6-6, \\ -32y=0. \end{gathered}

Dividing the above equation by -32 we get:


\begin{gathered} (-32y)/(-32)=(0)/(-32), \\ y=0. \end{gathered}

Finally, substituting y=0 in x=-5y+1 we get:


\begin{gathered} x=-5\cdot0+1 \\ =0+1=1. \end{gathered}

Answer: The solution to the given system of equations is:


x=1\text{ and y=0.}

User Haris Hajdarevic
by
3.3k points