47.4k views
4 votes
How can I evaluate this question?

How can I evaluate this question?-example-1

1 Answer

5 votes

\bf \left(x^2-\cfrac{2}{√(x)}+1 \right)(\sqrt[3]{x}+3x-4)\quad \begin{cases} (2)/(√(x))\implies \frac{2}{x^{(1)/(2)}}\implies 2x^{-(1)/(2)}\\\\ \sqrt[3]{x}\implies x^{(1)/(3)} \end{cases} \\\\\\ (x^2-2x^{-(1)/(2)}+1)(x^{(1)/(3)}+3x-4)


\bf \\\\\\ \begin{cases} x^2\cdot x^{(1)/(3)}+3x^3-4x^2\\\\ -2x^{-(1)/(2)}\cdot x^{(1)/(3)}-2x^{-(1)/(2)}\cdot 3x+2x^{-(1)/(2)}\cdot 4\\\\ +x^{(1)/(3)}+3x-4 \end{cases} \\\\\\ \begin{cases} x^{2+(1)/(3)}+3x^3-4x^2\\\\ -2x^{-(1)/(2)+(1)/(3)}-6x^{-(1)/(2)+1}+8x^{-(1)/(2)}\\\\ +x^{(1)/(3)}+3x-4 \end{cases}


\bf x^{(7)/(3)}+3x^3-4x^2-2x^{-(1)/(6)}-6x^{(1)/(2)}+8x^{-(1)/(2)}+x^{(1)/(3)}+3x-4 \\\\\\ \sqrt[3]{x^7}+3x^3-4x^2-\cfrac{2}{x^{(1)/(6)}}-6√(x)+\cfrac{8}{x^{(1)/(2)}}+\sqrt[3]{x}+3x-4 \\\\\\ x^2\sqrt[3]{x}+3x^3-4x^2-\cfrac{2}{\sqrt[6]{x}}-6√(x)+\cfrac{8}{√(x)}+\sqrt[3]{x}+3x-4
User SamiElk
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.