47.4k views
4 votes
How can I evaluate this question?

How can I evaluate this question?-example-1

1 Answer

5 votes

\bf \left(x^2-\cfrac{2}{√(x)}+1 \right)(\sqrt[3]{x}+3x-4)\quad \begin{cases} (2)/(√(x))\implies \frac{2}{x^{(1)/(2)}}\implies 2x^{-(1)/(2)}\\\\ \sqrt[3]{x}\implies x^{(1)/(3)} \end{cases} \\\\\\ (x^2-2x^{-(1)/(2)}+1)(x^{(1)/(3)}+3x-4)


\bf \\\\\\ \begin{cases} x^2\cdot x^{(1)/(3)}+3x^3-4x^2\\\\ -2x^{-(1)/(2)}\cdot x^{(1)/(3)}-2x^{-(1)/(2)}\cdot 3x+2x^{-(1)/(2)}\cdot 4\\\\ +x^{(1)/(3)}+3x-4 \end{cases} \\\\\\ \begin{cases} x^{2+(1)/(3)}+3x^3-4x^2\\\\ -2x^{-(1)/(2)+(1)/(3)}-6x^{-(1)/(2)+1}+8x^{-(1)/(2)}\\\\ +x^{(1)/(3)}+3x-4 \end{cases}


\bf x^{(7)/(3)}+3x^3-4x^2-2x^{-(1)/(6)}-6x^{(1)/(2)}+8x^{-(1)/(2)}+x^{(1)/(3)}+3x-4 \\\\\\ \sqrt[3]{x^7}+3x^3-4x^2-\cfrac{2}{x^{(1)/(6)}}-6√(x)+\cfrac{8}{x^{(1)/(2)}}+\sqrt[3]{x}+3x-4 \\\\\\ x^2\sqrt[3]{x}+3x^3-4x^2-\cfrac{2}{\sqrt[6]{x}}-6√(x)+\cfrac{8}{√(x)}+\sqrt[3]{x}+3x-4
User SamiElk
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories