501,985 views
20 votes
20 votes
Line: y= -x Quadrant: 2Trig: The terminal side of (theta) lies on the given line in the specified quadrant. Find the exact values of the six trigonometric functions of (theta) by finding a point on the line.Sin(theta)=Cos(theta)=Tan(theta)=Csc(theta)=Sec(theta)=Cot(theta)=

Line: y= -x Quadrant: 2Trig: The terminal side of (theta) lies on the given line in-example-1
User Mrexodia
by
2.9k points

1 Answer

15 votes
15 votes

Answer:

The exact values of the six trigonometric functions are;


\begin{gathered} \sin \theta=(1)/(√(2)) \\ \cos \theta=(-1)/(√(2)) \\ \tan \theta=-1 \\ \text{csc }\theta=√(2) \\ \text{sec }\theta=-√(2) \\ \text{cot }\theta=-1 \end{gathered}

Step-by-step explanation:

Given the function;


y=-x

At y = 1 the value of x is;


\begin{gathered} y=-x \\ 1=-x \\ x=-1 \end{gathered}

Therefore, at x=-1, y=1. (-1,1)

So, sketching the coordinates we have;

From the sketch, we can see that;


\begin{gathered} Opposite=y=1 \\ \text{Adjacent = x = -1} \\ \text{Hypotenuse = }√((-1)^2+1^2)=√(2) \end{gathered}

We can used the following values to find the values of each of the following;


\begin{gathered} \sin \theta=(opposite)/(hypotenuse)=(1)/(√(2)) \\ \cos \theta=\frac{Adjacent}{\text{hypotenuse}}=(-1)/(√(2)) \\ \tan \theta=(opposite)/(adjacent)=(1)/(-1)=-1 \\ \text{csc }\theta=(1)/(\sin \theta)=(√(2))/(1)=√(2) \\ \text{sec }\theta=(1)/(\cos \theta)=(√(2))/(-1)=-√(2) \\ \text{cot }\theta=(1)/(\tan \theta)=(-1)/(1)=-1 \end{gathered}

Therefore, the exact values of the six trigonometric functions are;


\begin{gathered} \sin \theta=(1)/(√(2)) \\ \cos \theta=(-1)/(√(2)) \\ \tan \theta=-1 \\ \text{csc }\theta=√(2) \\ \text{sec }\theta=-√(2) \\ \text{cot }\theta=-1 \end{gathered}
Line: y= -x Quadrant: 2Trig: The terminal side of (theta) lies on the given line in-example-1
User Purpletonic
by
3.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.