308,160 views
27 votes
27 votes
Using a graphing calculator find the value of tα/2 for a 95% confidence interval when the sample size is 24.

User Aslam
by
2.7k points

1 Answer

15 votes
15 votes

We will, first of all, calculate the alpha level


\alpha=1-confidence\text{ interval}

The given confidence interval is


=95\text{ \%=0.95}

Therefore, the alpha level will be


\begin{gathered} \alpha=1-0.95 \\ \alpha=0.05 \end{gathered}

for,


\begin{gathered} (\alpha)/(2,) \\ we\text{ will have} \\ (\alpha)/(2)=(0.05)/(2)=0.025 \end{gathered}

The degree of freedom is


\begin{gathered} df=n-2 \\ \text{where n=sample size}=24 \\ df=24-2 \\ df=22 \end{gathered}

Using a graphing calculator,


t_{(\alpha)/(2)}=2.073873

Hence ,

T(ALPHA/2) VALUE= 2.073873

User BananZ
by
3.0k points