240,828 views
25 votes
25 votes
Help me please i want to know if i’m doing it right

Help me please i want to know if i’m doing it right-example-1
User Wessam Zeidan
by
2.7k points

1 Answer

21 votes
21 votes

Answer:

The value of cos(theta) is;


\cos \theta=\frac{\sqrt[]{5}}{5}

Step-by-step explanation:

Given that;


\tan \theta=\frac{2\sqrt[]{11}}{\sqrt[]{11}}

Recall that from trigonometry;


\tan \theta=(opposite)/(adjacent)

So;


\begin{gathered} \tan \theta=(opposite)/(adjacent)=\frac{2\sqrt[]{11}}{\sqrt[]{11}} \\ \text{opposite}=2\sqrt[]{11} \\ \text{adjacent}=\sqrt[]{11} \end{gathered}

To get the hypotenuse;


\begin{gathered} c^2=a^2+b^2 \\ c^2=(2\sqrt[]{11})^2+(\sqrt[]{11})^2 \\ c^2=44+11 \\ c^2=55 \\ c=\sqrt[]{55} \end{gathered}

Also;


\begin{gathered} \cos \theta=(adjacent)/(hypotenuse)=\frac{\sqrt[]{11}}{\sqrt[]{55}}=\frac{1}{\sqrt[]{5}} \\ \cos \theta=\frac{1}{\sqrt[]{5}}*\frac{\sqrt[]{5}}{\sqrt[]{5}} \\ \cos \theta=\frac{\sqrt[]{5}}{5} \end{gathered}

Therefore, the value of cos(theta) is;


\cos \theta=\frac{\sqrt[]{5}}{5}

User SenorAmor
by
3.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.