366,254 views
37 votes
37 votes
1)Find the dimensions of the box with the minimum total surface area. 2)Find the minimum total surface area of the box.

1)Find the dimensions of the box with the minimum total surface area. 2)Find the minimum-example-1
User Peter Nixey
by
2.5k points

1 Answer

15 votes
15 votes

Let l, x, and h be the length, width, and height of the cuboid.

Therefore, its surface is given by the formula,


A_{\text{surface}}=lx+2(hl)+2(hx)

(Notice that the box does not have a lid.)

Furthermore,


\begin{gathered} l=4x \\ \text{and} \\ V=\text{lxh} \\ V=400 \\ \Rightarrow\text{lxh}=400 \end{gathered}

1) Notice that we have two conditions,


\begin{gathered} l=4x, \\ \text{lxh}=400 \end{gathered}

Therefore,


\begin{gathered} \Rightarrow h=(400)/(lx) \\ \text{and} \\ l=4x \\ \Rightarrow h=(400)/(4x\cdot x)=(100)/(x^2) \\ \Rightarrow h=(100)/(x^2) \end{gathered}

Therefore, the surface area as a function of the width is


\begin{gathered} \Rightarrow A_{\text{surface}}=4x\cdot x+2(4x\cdot(100)/(x^2))+2(x\cdot(100)/(x^2)) \\ \Rightarrow A_{\text{surface}}=4x^2+(800)/(x)+(200)/(x) \\ \Rightarrow A_{\text{surface}}=4x^2+(1000)/(x) \end{gathered}

We need to find the minimum of the function above; first, derivate A_surface and solve A'(x)=0, as shown below


A^(\prime)_{\text{surface}}(x)=8x+1000(-(1)/(x^2))=8x-(1000)/(x^2)

Then,


\begin{gathered} A^(\prime)_{\text{surface}}(x)=0 \\ \Rightarrow8x-(1000)/(x^2)=0 \\ \Rightarrow8x^3-1000=0 \\ \Rightarrow x^3=(1000)/(8) \\ \Rightarrow x=\sqrt[3]{(1000)/(8)}=(10)/(2)=5 \\ \Rightarrow x=5 \end{gathered}

Therefore, the width that minimizes the total surface area is x=5cm.

Finding l and h,


\begin{gathered} \Rightarrow l=4\cdot5=20 \\ \text{and} \\ h=(100)/(25)=4 \\ \Rightarrow h=4 \end{gathered}

The answers to part a) are l=20cm, x=5cm, h=4cm.

b)

Finally, set l=20, x=5, and h=4cm in the A_surface function, as shown below,


\begin{gathered} A_{\text{surface}}=20\cdot5+2(20\cdot4)+2(5\cdot4)=300 \\ \Rightarrow A_{\text{surface}}=300 \end{gathered}

The minimum total surface area is 300cm^2

User Jkigel
by
2.8k points