504,185 views
6 votes
6 votes
Find the side in of point a to point c

Find the side in of point a to point c-example-1
User Harshavmb
by
2.6k points

1 Answer

15 votes
15 votes

Step 1:

Calculate the measure of angle ∠ABC


\angle DBC+\angle ABC=180(\text{ sum of angles on a straight line)}
\angle ABC=65^0
\begin{gathered} \angle DBC+\angle ABC=180 \\ \angle DBC+65^0=180^0 \\ \angle DBC=180^0-65^0 \\ \angle DBC=115^0 \end{gathered}

From the triangle in the question,


a=10\operatorname{km},c=15\operatorname{km},B=115^0

Step 2:

Calculate the value of AB using the cosine rule below


b^2=a^2+c^2-2* a* c*\cos B

By substituting the values, we will have


\begin{gathered} b^2=a^2+c^2-2* a* c*\cos B \\ b^2=10^2+15^2-2*10*15*\cos 115^0 \\ b^2=100+225-300*(-0.4226) \\ b^2=325+126.78 \\ b^2=451.78 \\ \text{Square root both sides} \\ \sqrt[]{b^2}=\sqrt[]{451.78} \\ b=21.26\operatorname{km} \end{gathered}

Hence,

The distance of point A to point C is = 21.26km

Find the side in of point a to point c-example-1
User Jasiu
by
3.2k points