139k views
0 votes
Determine if the given function is a linear transformation. t(x1, x2, x3) = (−2x2, 6x3)

1 Answer

2 votes

T:\mathbb R^3\to\mathbb R^2 will be linear if for any
\mathbf x,\mathbf y\in\mathbb R^3 and constants
a,b\in\mathbb R, we have


T(a\mathbf x+b\mathbf y)=aT(\mathbf x)+bT(\mathbf y)

Let
\mathbf x=(x_1,x_2,x_3) and
\mathbf y=(y_1,y_2,y_3), and let
a,b be any two scalars. Then


a\mathbf x+b\mathbf y=(ax_1+by_1,ax_2+by_2,ax_3+by_3)

By definition of
T, we have


T(a\mathbf x+b\mathbf y)=(-2ax_2-2by_2,6ax_3+6by_3)

T(a\mathbf x+b\mathbf y)=(-2ax_2,6ax_3)+(-2by_2,6by_3)

T(a\mathbf x+b\mathbf y)=a(-2x_2,6x_3)+b(-2y_2,6y_3)

T(a\mathbf x+b\mathbf y)=aT(\mathbf x)+bT(\mathbf y)

Therefore
T is a linear transformation.
User Petrelharp
by
8.2k points