lim [(2x²/(1-x²) +3¹/ˣ] = lim (2x²/(1-x²) +lim 3¹/ˣ
x→∞ x→∞ x→∞
Let's find the 2nd limit : lim 3¹/ˣ = 3¹/∞ = 3⁰ = 1
x→∞
Now the 1st limit: lim (2x²/(1-x²): Divide numerator and denominator by x²:
x→∞
(2x²/(1-x²) = 2/(1/x² -x²/x²) = 2/(1/x² - 1)
When x→∞ 2/(1/x² - 1) → 2/(1/∞ -1) = 2/(-1) = -2
Then lim [(2x²/(1-x²) +3¹/ˣ] = -1
x→∞