159k views
3 votes
Let r3 have the euclidean inner product. let u = (-1, 1, 1) and v = (-7, 6, 15). if ||ku + v||= 7, what is k? give the exact answer using fractions if necessary. give the answers in descending order.

1 Answer

3 votes
ma
k\mathbf u+\mathbf v=k(-1,1,1)+(-7,6,15)=(-k-7,k+6,k+15)

Recall that for a vector
\mathbf x\in\mathbb R^n, we have
\|\mathbf x\|=√(\mathbf x\cdot\mathbf x). So we have


\|k\mathbf u+\mathbf v\|=√((k\mathbf u+\mathbf v)(k\mathbf u+\mathbf v))=7

\implies k^2\mathbf u\cdot\mathbf u+2k\mathbf u\cdot\mathbf v+\mathbf v\cdot\mathbf v=49

\implies3k^2+56k+261=0

\implies k=-9,-\frac{29}3
User Greg Bestland
by
8.6k points