231k views
2 votes
Solve the quadratic equation by completing the square. x^2-14x+42=0 First, choose the appropriate form and fill in the blanks with the correct numbers. Then, solve the equation. If there is more than one solution, separate them with commas.

Form: ______
Solution: _______

2 Answers

5 votes
x^2-14x+42=0 subtract 42 from both sides

x^2-14x=-42 halve the linear coefficient, square it, add it to both sides, in this case: (14/2)^2=7^2=49, add 49 to both sides

x^2-14x+49=7 now the left side is a perfect square...

(x-7)^2=7 take the square root of both sides

x-7=±√7 add 7 to both sides

x=7±√7

The above is the two solutions, 7+√7 and 7-√7

I am not sure what they mean by the proper form other than perhaps the point when you have a complete square as in the point in the process where you have a perfect square...

(x-7)^2=7
User Brian White
by
8.2k points
2 votes
x^2 - 14x + 42 = 0
x^2 - 14x = -42
x^2 - 14x + 49 = 49 - 42
(x - 7)^2 = 7
x - 7 = (+-) sqrt 7
x = 7 (+-) sqrt 7

solutions are : x = 7 + sqrt 7 and x = 7 - sqrt 7

User Jacek Cz
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories