If we take the first option of the question, we have the following zeros or points passing through the x-axis:
We then have:
These points coincide with the ones in the graph.
The expansion of this equation is:
If we give some points to the equation at points x = -6, x = -3, x = 0, x = 3, x = 6, we have:
f(-6) = 154
f(-3) = -32
f(0) = -20
f(3) = 28
f(6) = -50
And all these values adjust to the proposed graph.
Therefore, the equation for option A would produce the proposed graph.
This is a way to solve this question. We can also make use of the derivatives of the first or of the second-order to find if this equation produces this graph.