Answer:
![\displaystyle y=-7x-5](https://img.qammunity.org/2022/formulas/mathematics/college/jydaajb31232nticejztvrna4eppzzs9tu.png)
Explanation:
Equation of the Line
The equation of a line passing through points (x1,y1) and (x2,y2) can be found as follows:
![\displaystyle y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2022/formulas/mathematics/college/h158lweiz9t0f1et7lda1oxsaolmmfd4yp.png)
We'll take the first two points (-2,9) and (-1,2)
![\displaystyle y-9=(2-9)/(-1+2)(x+2)](https://img.qammunity.org/2022/formulas/mathematics/college/9gxcab2oqdcpdsz9tsyogevkewzqi3vuev.png)
Operating:
![\displaystyle y-9=(-7)/(1)(x+2)](https://img.qammunity.org/2022/formulas/mathematics/college/tsu0bpjcoa0ycbhcp68u4jqbq9byilsoo1.png)
![\displaystyle y-9=-7(x+2)](https://img.qammunity.org/2022/formulas/mathematics/college/jelu0i8opod45rad26ayxh53lq0u0nra24.png)
![\displaystyle y-9=-7x-14](https://img.qammunity.org/2022/formulas/mathematics/college/7v295m960l2bp31ldhczr0y9n7470dc57q.png)
Adding 9:
![\boxed{\displaystyle y=-7x-5}](https://img.qammunity.org/2022/formulas/mathematics/college/yw2y2bdh1xthgvxucmptp7ev468eni7j73.png)
Substituting the last two points we can verify they also belong to the line.