113,349 views
0 votes
0 votes
Triangle NOP, with vertices N(3,5), (7,9), and P(2,8), is drawn on the coordinategrid below.109N43TOWhat is the area, in square units, of triangle NOP?

Triangle NOP, with vertices N(3,5), (7,9), and P(2,8), is drawn on the coordinategrid-example-1
User Nuvio
by
2.5k points

1 Answer

28 votes
28 votes

To find the area we will use the heron's formula


\text{Area}=\sqrt[]{p(p-a)(p-b)(p-c)}

where p is half of the perimeter

a,b,c are the lengthof the sides of the triangle

First, we need to to find the lengths using the distance formula


|d|=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}

Let N0 be side a, OP be side b and PN be side c

Let's find N0 (side a)

N(3,5) 0(7,9)

x₁=3 y₁=5 x₂=7 y₂=9

substitute the values into the formula and evaluate


|NO|=\sqrt[]{(7-3)^2+(9-5)^2}


=\sqrt[]{4^2+4^2}
=\sqrt[]{16+16}=\sqrt[]{32}\approx5.6569

Next, is to find OP (side b)

0(7, 9) P(2,8)

x₁=7 y₁=9 x₂=2 y₂=8

substitute the values into the formula and evaluate


|0P|=\sqrt[]{(2-7)^2+(8-9)^2}


=\sqrt[]{(-5)^2+(-1)^2}
=\sqrt[]{25+1}=\sqrt[]{26}\approx5.099

Next is to find PN (side c)

P(2,8) N(3,5)

x₁=2 y₁=8 x₂=3 y₂=5


|PN|=\sqrt[]{(3-2)^2+(5-8)^2}


=\sqrt[]{(1)^2+(-3)^2}


=\sqrt[]{1+9}=\sqrt[]{10}\approx3.1623

We can go ahead and find p


p=((5.6569+5.099+3.1623))/(2)
\approx6.9591

p=6.9591 a=5.6569 b=5.099 c=3.1623

substitute the values to get your area


A=\sqrt[]{6.9591(6.9591-5.6569)(6.9591-5.099)(6.9591-3.1623)}
=\sqrt[]{6.9591(1.3022)(1.8601)(3.7968)}


=\sqrt[]{64}
=8\text{ square units}

User Jackcogdill
by
2.8k points