3.6k views
3 votes
If sinx+sin^2x=1 then what is the value of cos^12x+3cos^10x+3cos^8x+cos^6x

User Dcortez
by
7.7k points

1 Answer

4 votes

\sin x+\sin^2x=1\implies\sin x=1-\sin^2x=\cos^2x


\cos^(12)x+3\cos^(10)x+3\cos^8x+\cos^6x=\sin^6x+3\sin^5x+3\sin^4x+\sin^3x

=\sin^3x(\sin^3x+3\sin^2x+3\sin x+1)

=\sin^3x(\sin x+1)^3

Let
y=\sin x. Then


\sin^2x+\sin x-1=0\iff y^2+y-1=0\implies y=-\varphi,y=\varphi-1

where
\varphi=\frac{1+\sqrt5}2\approx1.61803 is the golden ratio.


\begin{cases}y=-\varphi\\y=\varphi-1\end{cases}\implies\begin{cases}\sin x=-\varphi\\\sin x=\varphi-1\end{cases}

Since
|\sin x|\le1 for all real
x, we can omit the first equation, leaving us with


\sin x=\varphi-1\approx0.61803


\cos^(12)x+3\cos^(10)x+3\cos^8x+\cos^6x=\sin^3x(\sin x+1)^3

=(\varphi-1)^3\varphi^3

=1

where the last equality follows from the fact that
\varphi=1+\frac1\varphi.
User Manibharathi
by
8.2k points