38.0k views
3 votes
Simplify completely quantity x squared minus 4 x plus 4 over quantity x squared plus 10 x plus 25 times quantity x plus 5 over quantity x squared plus 3 x minus 10.

quantity x minus 2 over quantity x plus 5
x minus 2 all over the quantity x plus 5 end quantity squared
the quantity x minus 2 end quantity squared all over x plus 5
quantity x minus 2 end quantity squared over quantity x plus 5 end quantity squared

2 Answers

2 votes
(x2 - 4x + 4)/(x2 + 10x + 25) • (x + 5)/(x2 + 3x - 10)
((x - 2)2)/((x + 5)2) • (x + 5)/(x + 5)(x - 2)
(x - 2)/((x + 5)2) • 1
(x - 2)/((x + 5)2)

The answer is B.
User TG Gowda
by
7.5k points
4 votes

Given expression:
(x^2-4x+4)/(x^2+10x+25)* (x+5)/(x^2+3x-10)


\mathrm{Factor}\:x^2-4x+4:\quad \left(x-2\right)^2


\mathrm{Factor}\:x^2+3x-10:\quad \left(x-2\right)\left(x+5\right)


\mathrm{Factor}\:x^2+10x+25:\quad \left(x+5\right)^2


(x^2-4x+4)/(x^2+10x+25)\cdot (x+5)/(x^2+3x-10)=(\left(x-2\right)^2)/(\left(x+5\right)^2)* (x+5)/(\left(x-2\right)\left(x+5\right))


\mathrm{Cancel\:the\:common\:factors}


=(x-2)/(\left(x+5\right)^2)

Therefore, correct option is 2nd option
(x-2)/(\left(x+5\right)^2).

User Arseni Kavalchuk
by
8.3k points