93.0k views
4 votes
What are the roots of the polynomial equation x4+x3=4x2+4x? Use a graphing calculator and a system of equations.

A.)–2, –1, 0, 2
B.)–2, 0, 1, 2
C.)–1, 0
D.)0, 1

User Strek
by
7.4k points

2 Answers

5 votes

x^4+x^3=4x^2+4x\\\\x^4+x^3-4x^2-4x=0\\\\x\Big[x^3+x^2-4x-4\Big]=0\\\\ x\Big[x^2\big(x+1\big)-4\big(x+1\big)\Big]=0\\\\x\Big[\big(x+1\big)\big(x^2-4\big)\Big]=0\\\\x\big(x+1\big)\big(x^2-4\big)=0\\\\ x\big(x+1\big)\big(x+2\big)\big(x-2\big)=0\\\\\\x=0\quad\vee\quad x+1=0\quad\vee\quad x+2=0\quad\vee\quad x-2=0\\\\ \boxed{x=0\quad\vee\quad x=-1\quad\vee\quad x=-2\quad\vee\quad x=2}

Answer A.
User Olegzhermal
by
7.9k points
3 votes

Answer:

A. –2, –1, 0, 2

Explanation:

Given :
x^(4) +x^(3) = 4x^(2) +4x

Solution:


x^(4) +x^(3) -4x^(2) -4x=0



x(x^(3) +x^(2) -4x-4) (taking x common from the equation)



x[x^(2) (x+1) - 4(x+1)]=0 (taking x+1 common in thye square bracket )


then,
x[(x+1)(x^(2)-4)] =0


then ,
(x)(x+1)(x^(2)-4) =0



(x)(x+1)(x+2)(x-2)



x = 0 ,
x+1 =0 ,
x+2 =0 ,
x-2=0



x=0 ,
x= -1 ,
x = -2 ,
x=2

So, the roots of the polynomial equation
x^(4) +x^(3) = 4x^(2) +4x are –2, –1, 0, 2 (option A)

User Bricktop
by
7.9k points

No related questions found