151,447 views
5 votes
5 votes
Center of Dilation1. Dilate Figure PQRS by a scale factor of using the point (4, 6)as the center of dilation. Determine the coordinates of FigureP'Q'R'S' and draw the approximate dilation on the coordinateplane.8th grade pre algebra

Center of Dilation1. Dilate Figure PQRS by a scale factor of using the point (4, 6)as-example-1
User John Roca
by
3.0k points

1 Answer

15 votes
15 votes

Answer:

The coordinates of P',Q',R',S' are;


\begin{gathered} P^(\prime)=(-6.5,6) \\ Q^(\prime)=(1,6) \\ R^(\prime)=(4,-7.5) \\ S^(\prime)=(-9.5,-7.5) \end{gathered}

Step-by-step explanation:

Given the quadrilateral PQRS as shown on the diagram.

To determine the coordinates of the figure P'Q'R'S' which is the dilated image of PQRS. Let us apply the formula below;


D_(o,k)(x,y)=(k(x-a)+a,k(y-b)+b)

Where;

the center of dilation is (a,b)

the scale factor is k

Given;


\begin{gathered} (a,b)=(4,6) \\ k=(3)/(2) \end{gathered}

And from the image PQRS;


\begin{gathered} P=(-3,6) \\ Q=(2,6) \\ R=(4,-3) \\ S=(-5,-3) \end{gathered}

We can then calculate the coordinates of their respective P',Q',R' and S' using the formula;


\begin{gathered} P^{}=(-3,6) \\ P^(\prime)=((3)/(2)(-3-4)+4,(3)/(2)(6-6)+6) \\ P^(\prime)=((-21)/(2)+4,0+6) \\ P^(\prime)=(-6.5,6) \end{gathered}
\begin{gathered} Q=(2,6) \\ Q^(\prime)=((3)/(2)(2-4)+4,(3)/(2)(6-6)+6) \\ Q^(\prime)=((-6)/(2)+4,0+6) \\ Q^(\prime)=(1,6) \end{gathered}
\begin{gathered} R=(4,-3) \\ R^(\prime)=((3)/(2)(4-4)+4,(3)/(2)(-3-6)+6) \\ R^(\prime)=(0+4,(-27)/(2)+6) \\ R^(\prime)=(4,-7.5) \end{gathered}
\begin{gathered} S=(-5,-3) \\ S^(\prime)=((3)/(2)(-5-4)+4,(3)/(2)(-3-6)+6) \\ S^(\prime)=((-27)/(2)+4,(-27)/(2)+6) \\ S^(\prime)=(-9.5,-7.5) \end{gathered}

Therefore, the coordinates of P',Q',R',S' are;


\begin{gathered} P^(\prime)=(-6.5,6) \\ Q^(\prime)=(1,6) \\ R^(\prime)=(4,-7.5) \\ S^(\prime)=(-9.5,-7.5) \end{gathered}

User Alpine
by
2.4k points