533,090 views
4 votes
4 votes
Use the properties of logarithms to expand logxz6.Each logarithm should involve only one variable and should not have any exponents. Assume that all variables are positive.

Use the properties of logarithms to expand logxz6.Each logarithm should involve only-example-1
User MuffinTheMan
by
2.3k points

1 Answer

7 votes
7 votes

Solution:

Given;


\begin{gathered} \log_((x)/(z^6)) \\ \end{gathered}

Recall the properties of logarithms;


\log_((a)/(b))=\log_(a)-\log_(b)

Thus;


\log_\text{ }((x)/(z^6))=\log_\text{ }(x)-\log_{\text{ }}(z^6)

Recall the power property of logarithm;


\log_{\text{ }}(a^b)=b\log_{\text{ }}(a)

Then;


\log_{\text{ }}(x)-\log_{\text{ }}(z^6)=\log_{\text{ }}(x)-6\log_{\text{ }}(z)

ANSWER:


\begin{equation*} \log_{\text{ }}(x)-6\log_{\text{ }}(z) \end{equation*}

User Doobi
by
3.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.