134k views
1 vote
Factor Completely 192x^3 + 375

User Ceeroover
by
8.5k points

2 Answers

3 votes

192x^3 + 375 : GCF = 3


3( (192x^3)/(3) + (375)/(3) )


3(64x^3+125)


3((4x)^3+5^3)


\text{Use Sum of Cubes:} \ {a}^(3)+{b}^(3)=(a+b)({a}^(2)-ab+{b}^(2))


3((4x+5)((4x)^2-(4x)(5)+5^2))


\text{Use Multiplication Distributive Property:} {(xy)}^(a)={x}^(a){y}^(a)(xy)


3(4x+5)(4^2x^2-4x*5+5^2)


3(4x+5)(16x^2-4x*5+5^2)


3(4x+5)(16x^2-4x*5+25)


3(4x+5)(16x^2-20x+25)
User Vivek Kogilathota
by
8.3k points
5 votes
192
x^(3)+375

Factor out common term 3:
3(64
x^(3)+125)

Next, factor 64
x^(3)+125:
Apply the sum of cubes rule:

x^(3)+
y^(3)=(x+y)(
x^(2)-xy+
y^(2))

64
x^(3)+125 = (4x+5)(
4^(2)
x^(2)-4*5x+
5^(2))

Refine to receive the simplified answer:
3(4x+5)(
4^(2)
x^(2)-4*5x+
5^(2))
3(4x+5)(16
x^(2)-20x+25)
User Sateesh
by
8.6k points