134k views
0 votes
Calculate the derivative of


\int\limits^a_ 0{(tdt)/(t+1) \,

a =
x^(2)

2 Answers

7 votes
2nd theorem of calculus says

(dy)/(dx) \int\limits^z_a {f(t)} \, dt =f(x)(z) (dy)/(dx) when a is a constant

so we are given
a=x^2
and we want to do

(dy)/(dx) \int\limits^x_a {(t)/(t+1)} \, dt =(x^2)/(x^2+1)(x^2)(dy)/(dx)=
(x^2)/(x^2+1)2x=(2x^3)/(x^2+1)
User Kundante
by
7.7k points
2 votes

\bf \cfrac{dy}{dx}=\cfrac{dy}{du}\cdot \cfrac{du}{dx}\\ \left. \qquad \right.\uparrow \\ \textit{2nd fundamental theorem of calculus}\\\\ -----------------------------\\\\ \displaystyle \cfrac{dy}{dt}\left( \int\limits_(0)^(x^2)\ \cfrac{t}{t+1}\cdot dt \right)\implies \cfrac{dy}{du}\cdot \cfrac{du}{dx}\\\\ -----------------------------\\\\


\bf u=x^2\qquad \cfrac{du}{dx}=2x\\\\ -----------------------------\\\\ \displaystyle \cfrac{dy}{dt}\left( \int\limits_(0)^(u)\ \cfrac{t}{t+1}\cdot dt \right)\implies \cfrac{u}{u+1}\cdot \cfrac{du}{dx}\implies \cfrac{u}{u+1}\cdot 2x \\\\\\ u=x^2\qquad thus\implies \cfrac{x^2}{x^2+1}\cdot 2x\implies \cfrac{2x^3}{x^2+1}
User MillerC
by
7.5k points