206k views
2 votes
A hemisphere has an area of 256 pi cm^2. What is its volume?

User Myra
by
5.8k points

1 Answer

0 votes

\bf \begin{array}{llll} \textit{surface area of a sphere}\\\\ A=4\pi r^2 \\\\\\ \textit{a hemisphere is half that}\\\\ A=\cfrac{4\pi r^2}{2}\implies A=2\pi r^2 \end{array}\qquad r=radius \\\\\\ \textit{now, we know the area is }256\pi \implies 256\pi =2\pi r^2 \\\\\\ \cfrac{256\pi }{2\pi }=r^2\implies √(128)=r\implies \boxed{8√(2)=r} \\\\ -----------------------------\\\\


\bf \textit{volume of a sphere}\\\\ V=\cfrac{4}{3}\pi r^3\qquad r=radius \\\\\\ \textit{a hemisphere is half that}\\\\ V=\cfrac{(4)/(3)\pi r^3}{2}\implies V=\cfrac{(4\pi r^3)/(3)}{(2)/(1)}\implies V=\cfrac{4\pi r^3}{3}\cdot \cfrac{1}{2} \\\\\\ V=\cfrac{2\pi r^3}{3} \\\\\\ \textit{now, we know the radius is }8√(2)\implies V=\cfrac{2\pi (8√(2))^3}{3} \\\\\\ V=\cfrac{2\pi (8^3√(2^3))}{3}\implies V=\cfrac{2\pi \cdot 512\cdot 2√(2)}{3} \\\\\\ \boxed{V=\cfrac{2048\pi √(2)}{3}}
User Fjsj
by
5.6k points