35,859 views
35 votes
35 votes
Using the Constant Multiple Rule, complete the table to find the derivative of the function without using the Quotient Rule.

Using the Constant Multiple Rule, complete the table to find the derivative of the-example-1
User AustinC
by
2.6k points

1 Answer

29 votes
29 votes

ANSWER:


\begin{gathered} \text{ Rewrite} \\ \\ y=(10)/(3)(1)/(x^(3)) \\ \\ \text{ Differentiate} \\ \\ y^(\prime)=(10)/(3)(-3x^(-4)) \\ \\ \text{ Simplify} \\ \\ y^(\prime)=-(10)/(x^(4)) \end{gathered}

Explanation:

We have the following expression:


y=(10)/(3x^3)

We rewrite and we would have:


y=(10)/(3)\left((1)/(x^3)\right)

Now we derive:


\begin{gathered} y^(\prime)=(10)/(3)(d)/(dx)\left((1)/(x^3)\right) \\ \\ y^(\prime)=(10)/(3)\left(-3x^(-3-1)\right) \\ \\ y^(\prime)=(10)/(3)(-3x^(-4)) \end{gathered}

Finally, we simplify


\begin{gathered} y^(\prime)=(10)/(3)(-3x^(-4))=-10x^(-4) \\ \\ y^(\prime)=-(10)/(x^4) \end{gathered}

User Aberna
by
3.2k points