76.8k views
5 votes
Find the perimeter of the triangle defined by the coordinates (7, 1), (-6, 1), and (10, 6). (Round to nearest tenth)

User Bmaddy
by
9.9k points

1 Answer

3 votes

Answer:


35.6\ units

Explanation:

we know that

The perimeter of triangle is equal to the sum of the length of the three sides

Let


A(7, 1), B(-6, 1), C(10, 6)

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

Find the distance AB


A(7, 1), B(-6, 1)

substitute in the formula


d=\sqrt{(1-1)^(2)+(-6-7)^(2)}


d=\sqrt{(0)^(2)+(-13)^(2)}


dAB=13\ units

Find the distance BC


B(-6, 1), C(10, 6)

substitute in the formula


d=\sqrt{(6-1)^(2)+(10+6)^(2)}


d=\sqrt{(5)^(2)+(16)^(2)}


dBC=16.8\ units

Find the distance AC


A(7, 1), C(10, 6)

substitute in the formula


d=\sqrt{(6-1)^(2)+(10-7)^(2)}


d=\sqrt{(5)^(2)+(3)^(2)}


dAC=5.8\ units

Find the perimeter


P=dAB+dBC+dAC


P=13+16.8+5.8=35.6\ units


User MichaelLo
by
8.0k points