320,153 views
39 votes
39 votes
Find sin , csco, and coto, where is the angle shown in the figure. Give exact values, not decimal approximations. sin . = D csce 5 5 coto 2027 Check 9 O Type here to search

User Matthew Curry
by
2.8k points

1 Answer

19 votes
19 votes

\begin{gathered} \sin (\theta)=(opposite)/(hypotenuse) \\ \csc (\theta)=(hypotenuse)/(opposite) \\ \cot (\theta)=(adjacent)/(opposite) \end{gathered}

Where:


\begin{gathered} opposite=3 \\ adjacent=5 \\ hypotenuse=\sqrt[]{3^2+5^2}=\sqrt[]{34} \end{gathered}

So:


\begin{gathered} \sin (\theta)=\frac{3}{\sqrt[]{34}} \\ \end{gathered}
\csc (\theta)=\frac{\sqrt[]{34}}{3}
\cot (\theta)=(5)/(3)

User Elethan
by
3.1k points